

DIFFERENTIAL DRAW TRANSMISSIONS

FEATURES

- F Equipped with automatic chain tensioner
- Requires shutdown only to change oil or replace chain
- Optional Integral correcting differential available installed in series with draw reduction gearing
- Infinitely adjustable to any speed setting within rated speed range
- Self-adjusting variable pitch all metal chain
- Accurate control screw turns indicator
- Horizontal or vertical mounting
- Self-contained splash lubrication
- All metal construction, cast iron housing
- Compact design
- Oil level sight gages
- Multiple shaft arrangements
- Gearing, integral motor, Vernier control, remote control options available
- Split Housing Construction

APPLICATIONS

The Specon Mechanical Differential Draw (MDD) Transmission embodies the differential draw principles first conceived and put into limited practice in the 19th century. This concept results in extremely accurate control of speed by compressing the speed range of a relatively wide mechanical variable speed device by appropriate connection to differential gearing. Inherent operating accuracies over 1000 times those of the variable element are attainable. This time-proven concept is combined with the service-proven components of the Specon MDD Transmissions to produce extremely accurate and reliable units with a long service life for:

printing presses, paper machinery, film processing, paper cutoff, synthetic fiber, alternator drives, textile machinery, metering pumps and other Trim Speed applications requiring inherently high operating accuracy.

BENEFITS

- Maintains proper chain tension through entire chain life. Shutdown not required to check or adjust tension
- F Reduces down time
- Permits instantaneous phase adjustment of output shaft. Correction can be made intermittently or continuously by manual or other means.
- Eliminates step adjusting of speed
- Assures positive power transmission
- Shows control screw turns; relates input/output speed ratio
- # Allows space conservation
- F Minimum maintenance required
- Assures long life and higher torque transmission
- # Allows easy mounting on machinery
- Allows instant determination of oil level
- Covers most applications of input and output
- Accommodates special speed requirement, allows finer speed adjustment
- Facilitates major maintenance

SPECIFICATIONS

Capacities and Ratings

Specon MDD Transmissions are available with an infinite number of output speed ranges. The selection tables list power and speed ranges for the various size units available with output speed or draw range nominally expressed in percent. Draw ranges may be used in various ways: for example, a 10% range may be expressed as $(\pm 5\%)$ (-2% to +8%), (+4% to -6%) or any combination of extremes having the same total percentage range. The tables show standard draw ranges. For example: size 1 shows 3, 4, 5, 71/2, 10, 15 and 20% draw. Any specific draw range, whether below the 5% shown or above the 20%, can be supplied.

For most applications, the standard ranges shown in the rating tables will bracket the range required.

Type A units are available in three basic styles and as vertical or horizontal configurations. All have the input and output shafts on opposite sides. Output shafts can be in any of three locations, dependent in part upon the output speed. The designations MDDY, MDDX, and MDDZ refer to the shaft positions. (See transmission style drawings on page 11.)

Units with output shafts at position Y have no output gearing and the output shaft is directly extended from the differential output gear. This unit is designated as an MDDY and the output speed is a function of the draw range. With the output shaft at position "X", single stage output speed-up or reduction gearing is included and unit designation becomes MDDX. Units with the output shaft at position "Z" have double stage output gearing and are referred to as MDDZ transmissions.

The three basic styles are, Style 1, which does not incorporate step-up or reduction input gearing. Style II, which has a single stage input gear set and Style III, which incorporates an integrally mounted synchronous or induction motor.

SPEED ADJUSTMENT

The Specon MDD Transmission is normally provided with a manual handwheel control. The number of control handwheel turns required to adjust the transmission through its entire speed range is listed in the selection tables. Because of the narrow speed range of the MDD unit the ratio of handwheel turns versus output speed in RPMs is ideal. For instance an MDD transmission with a range of 5% when operating at 1000 RPM will only change speed by an **average** of 4 to 5 RPMs for a complete turn of the control handwheel.

Even greater resolution of control can be attained by incorporating a 7.5:1 or 30:1 vernier control in which case the number of handwheel turns listed in the table will be multiplied by 7.5 or 30 to complete a full range speed change. When used, the vernier control is normally supplied as an integral part of the transmission, but the feature can be added to a unit already in the field for a remote vernier control available in either ratio.

Other control arrangements include Mechanical Remote Control, Lever Control, Electric Remote Control and Automatic Hydraulic or Pneumatic Control for use in automated applications. Refer to pages 18 to 20 for additional details on control media.

OPERATING

The Specon MDD units have unsurpassed inherent output speed regulation. The only element which can vary in speed ratio or setting as a result of load changes is the variable pitch chain. The effect of variation in this element is small because only a minor portion of the transmitted power is carried through it. The amount of power carried through the chain is a function of the draw range built into the unit and the narrower the range the less power that is transmitted through the chain.

The inherent output speed regulation of the MDD is further enhanced by the differential draw phenomenon through the bevel gear differential. While the variation within the variable element may be as much as 1% the actual variation at the output of the differential may be only 1/50th of that or .020%. This ratio of relative regulation is also a function of the speed range incorporated into the transmission.

OUTPUT SPEED REGULATION

Speed Range %	Max. Speed Setting %	Min. Speed Setting %
2	.005	.025
5	.01	.07
10	.02	.17
20	.05	.5

FIGURE 1
OUTPUT SPEED REGULATION

The accompanying table Figure 1 lists unit % variation in speed at maximum and minimum output speed settings for various draw ranges and this data is further illustrated in the output speed regulation curves, Figure 2. The inherent improvement in regulation resulting from a narrower draw range is readily apparent with these curves.

It is noted that the operating speed regulation is greater at maximum output draw or speed setting than it is at minimum draw setting. If best regulation is required at minimum output speed an alternate connection to the differential can be made to provide it.

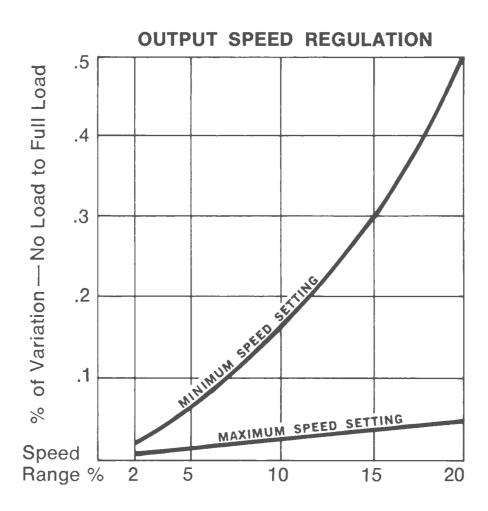


FIGURE 2
SPEED REGULATION CURVES

TORQUE CAPACITY

Specon MDD Transmissions are rated for constant torque capacity throughout the range of draw adjustment. The output torque ratings remain unchanged if the input speeds are less than the maximum listed in the selection tables.

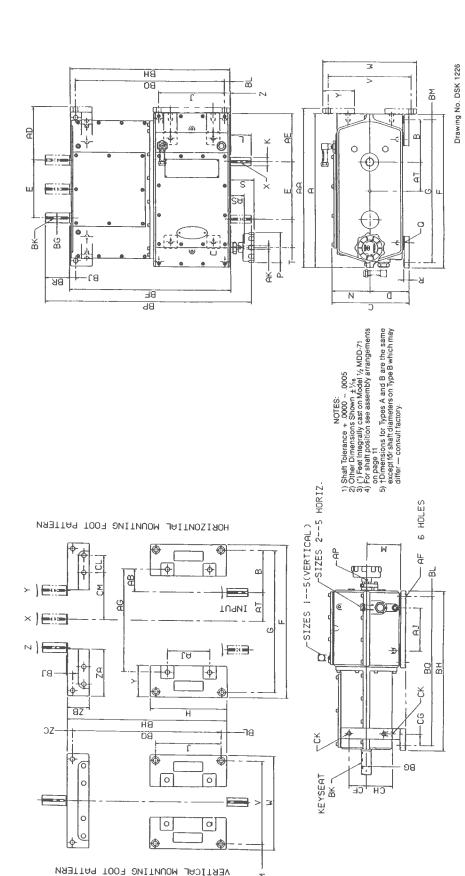
Output torque capacity is a function of unit rated power capacity and output speed built into a specific transmission. The torque capacity for any transmission can be calculated from the equation

$$^{\star}T = \frac{HP 63,000}{RPM}$$

*T in Pound-inches

The speed used in this determination should be the maximum of the draw range in the particular application. In no case, however, should the torque capacity exceed that shown in the accompanying table, Figure 3.

Note: For some speed ranges, all combinations of shaft position may not be available. Consult factory.


(*) LIMITING TORQUE CAPACITY

	Output T	Q. Range (LB—II	N)
SIZE	Minimum – At Highest RPM Range Shown in Tabulation	Maximum – Mechanical Limit at RPM Ranges Shown and Slower	RPM Range
1/2	100	1500	181-187
1	200	2400	203-233
2	375	3000	304-312
3	600	4100	288-345
4	1330	7200	236-246
5	1995	8900	233-243
6	1870	12,500	360-378

FIGURE 3 LIMITING TORQUE CAPACITY

The standard Specon draw transmission model suffix — 66, 71 and 84 is furnished with the Specon Vari-Chain transmission integrally mounted to the differential housing.

OUTLINE DIMENSIONS

AE	113/4	95/8	œ	71/16	51/2	*							
AD	131/4	105/8	6	$8^{1/16}$	61/8	51/2	ZC	11/8	1	-	3/4	5/8	5/8
AB	9	5	43/16	$3^{9/16}$	25/8	*	ZB	45/8	45/32	$3^{1/2}$	$2^{1/2}$	$2^{1/2}$	11/4
AA	41	331/4	273/8	233/4	181/8	161/4	ZA	113/16	81/4	8	$6^{13/16}$	53/8	47/8
Z	13/16	11/8	15/16	1	11/16	115/16	CM	1111/16	10	813/16	$6^{27/32}$	53/8	$4^{13/16}$
>	73/8	9	2	43/8	35/8	23/8	CL	31/2	3	21/2	21/32	2	19/16
	(41/4	33/4	x 31/2	x 2 ⁵ / ₈	x 2 ³ / ₈	x 15/8	S	713/16 5/8-11	1/2-13	1/2-13	1/2-13	1/2-13	1/2-13
×	X 3/16 X	X 3/16 X	X 5/32 >	x 1/8 X	x 1/8 X	x 3/32 x 15/8	끙	713/16	61/4	51/16	43/16	က	215/16
	3/8	3/8	5/16	1/4	1/4	3/16 >	50	21/2	25/32	11/2	11/4	19/32	*
>	22 ³ / ₈	161/2	161/B	13 ⁵ / ₈	103/4	93/4	CF	65/8	51/4	31/2	29/32	2	23/8
>	201/8	141/2	14 ⁷ / ₈	12	91/2	81/4	BR	41/2	49/32	37/8	က	23/4	2
F	81/16	61/2	53/8	413/32	31/4	31/8	BQ	463/16 3413/16	30	3313/16 245/16	211/2	17	1
တ	33/4	311/16	35/8	29/16	211/16	21/4	ВР	46 ³ / ₁₆	405/8	3313/16	291/8	239/16	18 ³ / ₈
ж	11/2	-	-	1	5/8	2/8	BM	11/8	-	5/8	13/16	5/8	3/4
Ø	6-8/2	5/8-11	1/2-13	1/2-13	1/2-13	*	В	11/16	-	15/16	13/16	5/8	11/16
۵	9	9	9	31/2	31/2	31/2		(41/4	× 4	× 31/2	x 2 ³ / ₄	25/8	x 2
z	5 99/16	713/16	69/16	511/16	43/8	43/8	BK	1/2 × 1/4 × 41/4	1/2 X 1/4 X	x 5/32	X 5/32 X	$^{1/4} \times ^{1/8} \times 2^{5/8}$	3/16 X 3/32
Σ	815/16	71/4	9	53/16	37/8	*				5/16	5/16	1/4	
_	41/2	4	31/2	23/4	2 ³ / ₈	17/8	BJ	13/16	17/32	/4 13/16	16 7/8	/4 3/4	6 19/16
¥	13/4	19/16	15/16	11/8	15/16	3/4	BH	37	32	261	231	181	125/16
7	8 171/2	14	8 121/4	4 10 ⁵ / ₈	71/2	31/2	BG	6 21/8	13/4	6 1 ³ / ₈	8 13/8	6 11/8	2 7/8
Ξ	4 19 ⁵ /8	16	2 141/8	8 121/4	4 83/4	4 47/8	BF	373/16	3211/32	267/16	₅ 23 ³ / ₈	18 ⁷ / ₁₆	141/2
G	2 371/4	30	4 251/2	211/8	2 161/4	2 161/4	AT	ω 9	61/2	51/8	45/16	31/4	23/4
ഥ	391/2	32	4 263/4	223/4	171/2	171/2	AS	113/16	15/8	11/2	13/8	19/16	11/8
Ш	6 16	13	101/4	85/8	61/2	51/2	AP		cre	Sŀ		-20	\square
۵	107/16	6 81/4	2 9	8 63/16	41/2	4	AK	2 .630	2 630	.551	.551	.394	.375
ပ	3 20	161/16	139/16	117/8	8//8	83/8	A	131/2	101/2	9	73/4	47/8	*
B	10 ⁵ / ₈	81/2	3 75/8	1 61/4	47/8	53/8	AG	28	23	18 ⁵ / ₈	153/4	113/4	*
A	391/2	321/4	$26^{3/8}$	223/4	171/2	*	AF	29/32	11/16	17/32	17/32	17/32	17/32
Size	വ	4	က	2	-	1/2	Size	2	4	က	2	-	1/2

FIGURE 4 OUTLINE DIMENSIONS - STYLE I

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS — TYPE A STYLE II MDD DRAW TRANSMISSIONS

BX KEYSEAT ZΨ AR di A M ď BG ₹ _| NOTES: 1) Shaft Tolerance + .0000 - .0005 2) Other Dimensions Shown ± '/s 3) (') Feet Integrally cast on Model '½ MDD-71 4) For shaft position see assembly arrangements on page 11 HORIZ. (9) 6 HOLES 5 HORIZONTIAL MOUNTING FOOT PATTERN 1--5(VERTICAL) -SIZES 2-AF. 10 φ-B BB SIZES B INPUT (A 80 BH ZΑ 18 8Z Н8 JZ-80 KEYSEAT BK ⊃ 0 0 0 0 0

VERTICAL MOUNTING FOOT PATTERN

П	(0)						ပ	1/8			. 4	19/32	. ∞
AQ	$2^{3/16}$	17/8	3/4	13/8	15/16	19/32) ZC	Ľ	1	1	2 3/4		1 5/8
AN	161/16	13	1015/32	$8^{23/32}$	61/2	57/8	ZB	45/8	45/32	31/2	21/2	21/2	11/4
AM	21/4	13/4	11/2	11/4	11/8	1	ZA	113/16	81/4	8	613/16	53/8	47/8
AL	41/2	4	37/16	23/4	27/16	2	AK	.630	.630	.551	551	.394	.375
AJ	131/2	101/2	6	73/4	47/8	*	S	5/8-11	1/2-13	1/2-13	1/2-13	1/2-13	1/2-13
AG	28	23	185/8	153/4	113/4	*	H	713/16	61/4	51/16	43/16	က	215/16
AF	29/32	11/16	17/32	17/32	17/32	17/32	50	21/2	25/32	11/2	11/4	19/32	*
AD	131/4	10 ⁵ / ₈	9	81/16	61/8	51/2	15 15	6 ⁵ / ₈	51/4	31/2	29/32	2	23/8
AA	41	331/4	$27^{3/8}$	233/4	181/8	161/4	BY (525/16 6	455/8	381/4	3311/16 2	279/16	225/16
Υ	73/8	9	5	43/8	35/8	23/4	BV	43 ⁵ / ₁₆ 52	3711/32 4	3015/16 3	27 ^{15/16} 33	22³/8 27	185/16 22
*	$22^{3/8}$	161/2	161/8	135/8	103/4	9 ₃ / ₈	BU	43	37	30	27	22	18
^	201/8	141/2	147/8	12	91/2	81/4	BR E	41/2	49/32	37/8	3	23/4	2
R	13/8	7/8	7/8	7/8	9/16	7/8	\vdash	Ш	\vdash	_		\vdash	
Ø	7/8	5/8	1/2	1/2	1/2	*	BQ	3413/16	30	245/16	211/2	17	-
Ь	9	9	9	31/2	31/2	31/2	BM	11/8	1	5/8	13/16	5/8	3/4
z	93/8	73/4	6 ³ / ₈	51/2	41/4	43/8	В	11/16	1	15/16	13/16	5/8	11/16
Σ	815/16	71/4	9	53/16	37/8	*	BK	1/2 × 1/4 × 41/4	1/2 × 1/4 × 4	5/32 x 31/2	5/16 X 5/32 X 23/4	$^{1/8} \times 2^{5/8}$	3/16 X 3/32 X 2
J	171/2	14	121/4	105/8	71/2	31/2	L	1/2 X	32 1/2 >	13/16 5/16 X 5/32 X		1/4 X 1/8 X	19/16
H	19 ⁵ / ₈	16	141/8	121/4	83/4	47/8	B	13/16	17/32	$oxed{}$	1/8	3/4	19/16
ប	371/4	30	251/2		161/4	161/4	BH 5	8 37	32	8 261/4	8 231/16	8 181/4	125/16
ш	107/16 391/2 371/4	32	263/4 251/2	223/4 211/8	171/2 161/4	173/4	BG 8	/8 21/8	13/4	13/8	13/8	8 11/8	8 7/8
D	107/16	81/4	7	63/16	41/2	4	BB	6 18 ⁵ / ₈	3 15	6 123/4	6 10 ⁹ / ₁₆	3 81/g	4 81/8
ပ	20	161/16	139/16	117/8	87/8	83/8	AZ	75/16	61/8	57/16	59/16	45/8	53/4
В	10 ⁵ / ₈	81/2	75/8	61/4	47/8	5 ³ / ₈	AT	ω 	8 61/2	16 51/8	8 45/16	8 31/4	8 23/4
A	391/2	321/4	263/8	223/4	171/2	*	AR	1/2 × 1/4 × 43/8	3/8 × 3/16 × 35/8	3/8 × 3/16 × 33/16	1/4 × 1/8 × 25/8	1/4 × 1/8 × 23/8	1/4 × 1/8 × 17/8
Size	5	4	3	2	-	1/2	Size	5 1/2 >	4 3/8 x	3/8 x	2 1/4 >	1 1/4.)	1/2 1/4 >

Drawing No. DSK 1227

FIGURE 5 OUTLINE DIMENSIONS — STYLE II

PRINCIPLES OF OPERATION

GENERAL DESCRIPTION

The basic components of the Specon Draw Transmission are a 4:1 infinitely variable all metal chain and pulley combination and a bevel gear differential assembly. The input to the transmission drives the constant speed pulleys of the variable element and one member of the differential. By controlling the speed of a second element of the differential through reduction gearing from the adjustable 4:1 shaft of the variable chain connection, the third or output gear of the differential is controlled within a highly compressed speed range.

The output speed range is a function of the reduction incorporated between the variable speed shaft of the variable element and the variable speed differential gear. The higher the reduction the narrower the speed range and, consequently, the greater the accuracy.

The Specon Draw Transmission is provided as a semicustom item. Since it also includes an output gear section, output speed ranges and magnitude of output speed can be provided to match exactly the application requirements.

The extreme accuracy and fine control of the Specon MDD transmissions make them excellent in applications such as web control on printing presses, cellophane casting machines, film processing equipment and paper making machines, alternator drives, glass drawing machines, conveyor synchronizing drives, fiber winding and drawing machinery, shingle cut-off machinery, metering pumps and many others.

Three basic types of Specon Draw Transmissions are available.

Type A is similar to the cross section view shown in Fig. 6. Input and output shafts are always on opposite sides.

CROSS SECTIONS

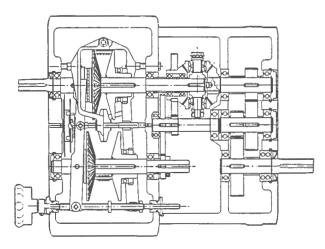


FIGURE 6
CROSS SECTION OF TYPICAL TYPE A
DIFFERENTIAL DRAW TRANSMISSION

Type B units differ in that input and output shafts are both on the same side of the transmission. The internal configuration and the principle of operation are similar to the Type A unit. The input shaft location is always designated as position Y and the output shaft as position Z. (See Figure 7)

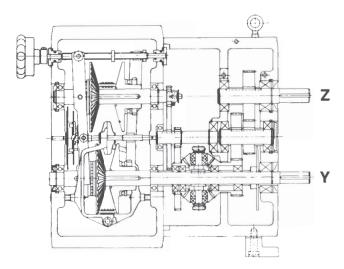


FIGURE 7
TYPE B DIFFERENTIAL DRAW TRANSMISSION

Type C units can be supplied in a multiplicity of arrangements in that the variable speed element and the differential gearing elements are contained in separate housings with external connections between the shafting. This type of unit is supplied as a "piggy-back" arrangement with the input and output shafts on the same or opposite sides as desired. (See Figure 8)

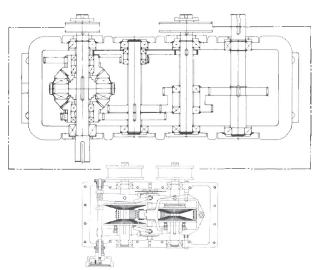
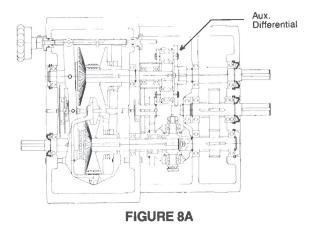



FIGURE 8
TYPE C DIFFERENTIAL DRAW TRANSMISSION

Type A and Type C draw transmissions are available with a built-in auxiliary differential (Figure 8A) for phase shifting and register control applications. Speed and power ratings for the Type A versions are similar to those shown for the Type A MDDY or MDDX transmissions with the output shaft at position Y or position X. The correction shaft is always at the Z position.

Correction shaft rotation in one direction causes output to speed up while rotation in the opposite direction causes output shaft speed to decrease. The ratio of output shaft rotation to correction shaft rotation will be in the order of 10:1 but will vary as a function of the draw range and output speed specified. Consult the factory for the ratio after the draw range and output speed have been established.

In Type C transmissions, because of their versatility and the various configurations that may be incorporated into a transmission, the control shaft location is not fixed. Consult the factory for approval of a proposed position or for recommendations.

TORQUE MEASUREMENT AND CONTROL

The auxiliary differential which is incorporated into the Type A or Type C units may be used to measure output torque. The torque reflected at the control shaft is directly related to output torque, and by utilizing a torque arm and a force transducer, this torque may be indicated or recorded at the transmission or at a remote position.

With the incorporation of a feedback system to control the variable speed element, the output draw setting, and, consequently, torque flow where torque is a function of output speed, may be controlled.

The factory should be consulted regarding applications proposed for torque measuring or torque control systems. Following are examples of Style I Type A and B Transmissions. Where it is required that the input and output shafts are on the same side, the Type B transmission unit would be selected.

Style I Type A Assembly D Output at Z

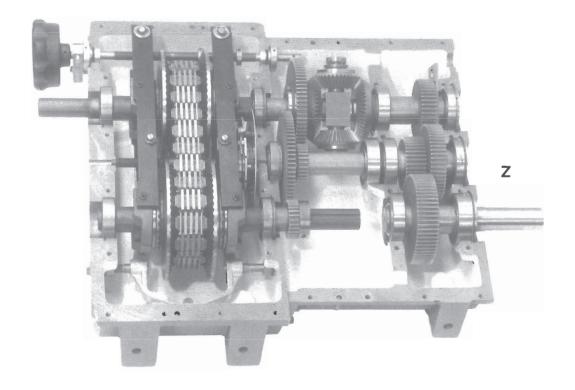
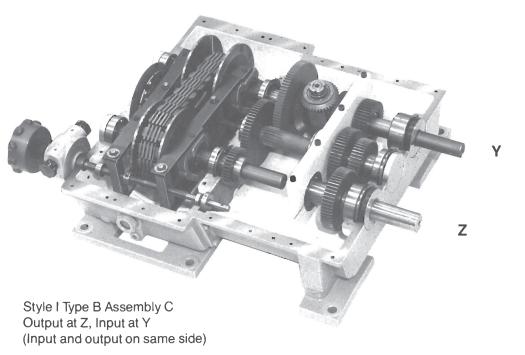



FIGURE 9 STYLE I TYPE A TRANSMISSION

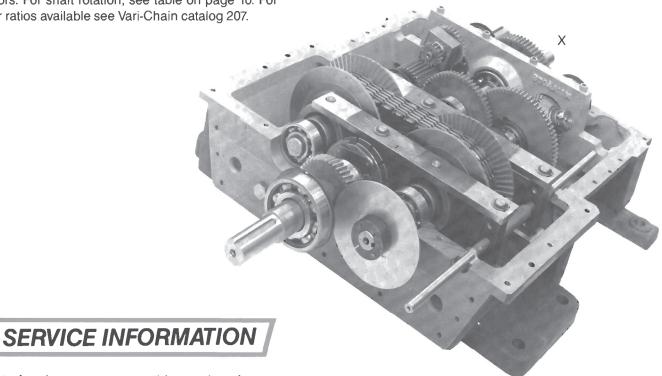


FIGURE 10 STYLE I TYPE B TRANSMISSION

Style I rated input speed is shown in the various rating tables. For shaft rotation, see table on page 10.

Style II units, with enclosed input gearing, are available for input speeds higher than those listed, or for maximum output at lower input speeds. Style II units are also available for direct coupling to 1750 RPM driving motors. For shaft rotation, see table on page 10. For gear ratios available see Vari-Chain catalog 207.

Note: Unit Pictured Has Auxiliary Differential (Page 7)

A list of replacement parts and instructions for servicing the Differential Draw Transmission are available in the Installation, Operating and Maintenance Instructions Bulletin 201 IOM and 207 IOM.

FIGURE 10AStyle II Type A Assembly 5
Output At X

SELECTION AND ORDERING INFORMATION

The accompanying tables are designed to simplify the steps necessary for selection of the Specon Mechanical Differential Draw Transmission required for any specific application within the power ranges shown. For other power outputs, consult the factory. To select a transmission, first, from the application, determine the type — whether Type A, B or C — the assembly configuration — referring to the configuration drawings. Follow the steps listed below, consulting the proper selection table.

POWER RATING

From the characteristics of the driven machine and its application determine the speed and torque requirements to establish the nominal power rating. Considering the intended usage, determine the service factor from the following table.

Operating Hours Per Day	Stops and Starts	Service Factor
8-10	Infrequent	1
8-10	Frequent	1:33
10-24	Infrequent	1:33
10-24	Frequent	1:67

Applying the service factor determine the required power rating; that is, multiply the power needed by the driven machine by the appropriate service factor to arrive at the power requirement of the Specon unit. For example, if the driven machine demands 10 HP and is operated 8 hours per day with frequent stops and starts the transmission required power rating would be 13.3 and a 2MDD transmission should be selected.

(Caution: Do not ignore the service factor requirement.)

SPEED AND RANGE

Determine the exact input speed. It should be within 10% of the rated input speeds indicated in the selection Tables for the transmission being considered for use.

If it is not, consult the factory for alternative options.

The user should determine the maximum no load to full load speed variation that can be tolerated. Consult the Output Speed Regulation Table (Page 2) to determine the acceptable draw range. This may be one of the typical ranges listed or intermediate between those shown.

Determine the nominal output speed required for the application. Using the draw range selected, calculate the minimum and maximum output speeds.

For Example, given a maximum No Load to Full Load requirement of 0.2%, the table on page 2 shows that the required regulation can be achieved with a speed range (draw) of 10%. If the rated input speed is 720 RPM and the nominal output speed requirement is 509 RPM with a +9% and -1% draw, the operating speed range is 504 to 554 RPM.

Having determined the required power rating, consult the appropriate output power capacity selection table and examine the minimum and maximum speeds for the speed range chosen.

Using the example cited, if the power determination has indicated a ½MDD, enter the Type A ½MDD-71 table at 10% speed range and compare minimum and maximum speeds in the table with the operating speed range (504 to 554 rpm). Note that either a ½-MDDX or ½-MDDZ will satisfy the requirement.

If the user application is such that the minimum and maximum speeds lie between adjacent rows in the table, the factory may be able to supply a transmission gear set which will satisfy the requirements. As an additional option, the user may enter the table at 15% speed range and determine if the minimum and maximum speeds are compatible with the transmission speeds shown. In this case, the user should be willing to accept the additional variation in speed from No Load to Full Load conditions.

In the case of Type B, check to assure that the output speed range falls within that shown in the Table. In the case of a Type C, check with factory to determine whether or not the desired combination of shaft positions and output speed can be accommodated.

Proceed to selection of Style and Assembly Configuration.

STYLE AND ASSEMBLY CONFIGURATION

Select a Style I, II or III transmission in accordance with the application speed and power requirements. Select an assembly arrangement according to the physical requirements of the driven machine with respect to input and output shaft locations and control handwheel location. Select horizontal or vertical arrangement.

Power capacities shown are maximum rated and should not be used in all cases as accuracy varies with power requirements, draw range and type of duty.

Style II transmission ratings may be reduced depending upon duty requirements.

	SHAFT POSITIONS	INPUT VS. OUTPUT ROTATION
Style I	Υ	Same
-	X	Opposite
	Z	Same
Style II	Υ	Opposite
•	X	Same
	Z	Opposite

In the event that the input speed is NOT within 10% of the rated input speeds indicated in the Selection tables the factory may be able to supply a transmission gear set which can satisfy the torque requirements at the rated speeds.

The user can make some simple calculations to determine if a standard transmission can be supplied, and to note its physical configuration, in order to assist him in preliminary planning. For example, suppose that the user's requirements are as follows:

Input speed 650 rpm Output speed 725 to 790 rpm

Output Torque 400 # inches minimum

Service Factor 1.25 minimum

Input/output relative same

direction of rotation.

1 - Determine a nominal power rating from the requirements

$$T = \frac{HP 63000}{RPM}$$

$$HP = \frac{T \times RPM}{63000} \times SF = 6.27$$

where HP is the output power required, T is 400 # inches, RPM is maximum output speed and SF is service factor.

2 – Using the Rating tables select a transmission which can furnish the required power.

A 1MDD unit will furnish 9 HP at a rated input speed of 900 rpm. Since the input speed will be 650 rpm, the power output will be reduced proportionally.

$$HP = \frac{650}{900} \times 9 = 6.50 \text{ which is adequate for}$$
the application

Note that the Draw Range for this requirement is

$$100 \frac{(790-725)}{725} = 0.0897 \times 100 = 8.97\%$$
 approximately 9%

where Draw Range is the amount the maximum output speed exceeds the minimum output speed

Draw Range (%) =
$$\frac{100 \text{ (RPM max} - \text{RPM min)}}{\text{RPM min}}$$

3 – Determine minimum and maximum output speeds of the selected transmission for this draw range.

$$\frac{900}{650}$$
 x 725 = 1003.8 RPM minimum

$$\frac{900}{650}$$
 x 790 = 1093.8 RPM maximum

where transmission rated input speed = 900 rpm and transmission operating speed = 650 rpm.

4 - Select closest standard speeds from rating table.

Since the user requires the same relative rotation between input and output shafts a Type A Style 1 transmission with output at Z is indicated. Enter the Type A Style 1 1MDDZ Table page 13 at 10% Draw Range (closest to 9% from step 2), and note that the closest standard minimum and maximum speeds are 999 and 1098 respectively. This means that the unit can supply the necessary torque at

$$\frac{650}{900}$$
 x Speed min (999) = 721.5 RPM

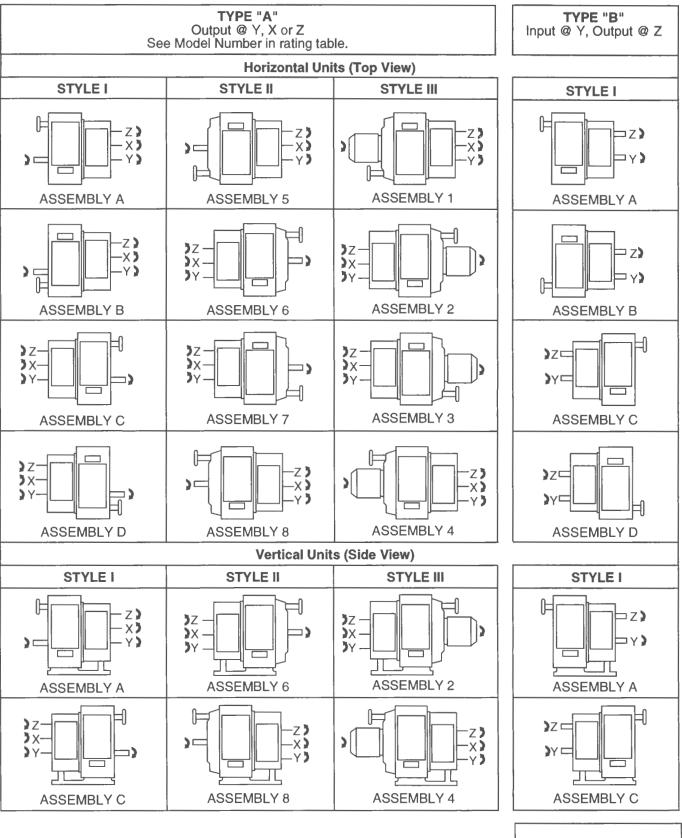
$$\frac{650}{900}$$
 x Speed max (1098) = 793 RPM

for an input speed of 650 rpm. Note that the Draw Range is

$$100 \frac{(793-721.5)}{721.5} = 9.9\% \text{ which is slightly higher than the } 8.97\% \text{ specified originally.}$$

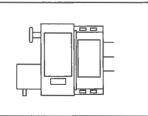
The torque at the maximum speed will be

$$\frac{9(63000)}{1098} = 516.4 \text{ # inches}$$


To summarize, the preliminary selection will supply

	Max Torque	Min/N	Лах	Draw Range
	# inches	Spe	ed	%
Actual	516.4	721.5	793	9.9
Specified	400	725	790	8.97

If absolutely necessary, the factory may be able to supply a non-standard gear set to more closely meet the specified requirements.


In the case of Type B, check to assure that the output speed range falls within that shown in the Table. In the case of a Type C, check with factory to determine whether or not the desired combination of shaft positions and output speed can be accommodated.

TRANSMISSION STYLES

Consult Factory for Details.

SPECON 1/2 MDD-71 DIFFERENTIAL DRAW TRANSMISSION **OUTPUT POWER CAPACITY 4 1/2 HP MAX.**

TYPE A, STYLE I

RATED INPUT SPEED — 720 RPM

CONTROL SCREW TURNS: — 71, 9.5 — 84, 8.8

			D	RAW C	R SPE	ED RA	NGE A	ND OL	JTPUT	RPM				
Model	4	%	51/2	2%	71/	2%	10	1%	15	5%	20)%	Rotation Output	Output
No.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	vs. Input	Shaft Pos.
½ MDDY-71	1364	1420	1339	1414	1308	1407	1271	1397	1198	1379	1132	1363	Same	Υ
	2387 1970 1564 1364	2485 2050 1628 1420	2344 1934 1535 1339	2474 2041 1621 1414	2288 1888 1499 1308	2462 2031 1613 1407	2225 1836 1457 1271	2444 2017 1602 1397	2097 1730 1373 1198	2413 1991 1581 1379	1982 1635 1298 1132	2385 1968 1563 1363		
½MDDX-71	1190 945 780 706	1239 983 811 735	1168 927 765 693	1234 979 808 732	1141 906 747 677	1228 974 804 728	1109 880 726 658	1219 967 798 722	1045 830 685 620	1203 955 788 713	988 784 647 586	1189 944 779 705	Орр.	X
	637 541 455	663 563 473	625 531 447	660 561 471	610 519 436	657 558 468	593 504 424	652 554 465	559 475 400	643 547 459	528 449 378	636 541 454		
*	2737 2301 2259 2083	2849 2395 2351 2167	2687 2259 2218 2045	2837 2384 2341 2158	2623 2205 2165 1996	2823 2373 2323 2148	2551 2144 2105 1941	2802 2356 2313 2132	2403 2020 1983 1829	2766 2326 2283 2105	2272 1910 1785 1729	2734 2298 2256 2080		
*	2058 1795 1793 1719	2142 1868 1866 1789	2020 1762 1760 1688	2133 1860 1858 1781	1973 1721 1719 1648	2122 1851 1849 1772	1918 1673 1671 1602	2107 1838 1835 1760	1807 1576 1574 1510	2080 1814 1813 1738	1708 1490 1488 1427	2056 1793 1791 1717		
*	1564 1364 1190 1083	1564 1628 1535 1621 1505 1613 1457 1602 1373 1581 1298 1563 1364 1420 1339 1414 1308 1407 1271 1397 1198 1379 1132 1363 1190 1239 1168 1234 1141 1228 1109 1219 1045 1203 988 1189 1083 1127 1063 1122 1038 1117 1009 1109 951 1094 898 1081												
*	1038 1036 905 893	1081 1079 942 930	1019 1017 887 877	1076 1074 938 926	995 994 867 857	1071 1069 933 921	967 966 843 832	1063 1062 926 915	912 910 794 785	1049 1048 914 903	861 860 751 741	1037 1036 904 893		
* 1/2 MDDZ-71	823 809 729 718	857 842 760 747	809 794 716 704	854 838 757 744	790 775 700 688	850 834 753 740	768 753 680 669	844 828 747 735	723 710 641 630	833 817 738 725	684 671 606 595	823 808 729 717		
*	680 621 616 592	708 646 641 617	667 609 604 581	705 643 638 614	652 595 590 568	701 640 635 611	633 578 574 552	697 636 630 607	597 545 541 520	688 627 622 599	564 515 511 492	679 620 615 592	Same	Z
*	555 541 536 521	578 563 558 542	545 531 526 512	576 561 556 540	533 519 514 500	573 558 553 537	518 504 500 486	569 554 549 534	488 475 471 458	561 547 542 527	461 449 445 433	555 541 536 520		
*	484 472 455 411	504 492 473 428	475 463 447 404	501 489 471 426	464 453 436 395	499 487 468 424	451 440 424 383	495 484 465 421	425 415 400 361	489 477 459 416	401 392 378 341	483 472 454 411		
*	397 375 346 315	413 390 359 327	390 368 340 309	411 388 358 326	381 360 332 302	409 387 356 324	370 349 322 294	406 384 354 322	349 329 304 277	401 379 349 318	329 311 287 262	396 374 345 314		
	309 280 260 253	322 291 270 263	304 275 255 248	321 290 269 262	297 269 249 243	319 289 267 261	288 261 243 235	317 287 266 259	272 246 229 222	313 283 262 255	257 232 216 210	309 280 259 252		
	236 215 213 181 152	245 224 221 187 157	231 211 209 178 149	243 223 220 187 157	226 206 204 173 146	242 222 218 186 156	220 200 198 169 142	240 220 217 184 155	207 189 187 159 134	237 217 214 182 153	196 178 177 150	234 215 212 180 151		

^{*}Also available in Type B configuration. NOTE: Ranges shown in shaded area have limited Torque capacity — See Page 4

SPECON 1 MDD-66 DIFFERENTIAL DRAW TRANSMISSION **OUTPUT POWER CAPACITY 9 HP MAX.**

TYPE A, STYLE I

RATED INPUT SPEED - 900 RPM

CONTROL SCREW TURNS: — 66, 12.5 — 84, 11.0

Model	3	%	4	%	59	%	71/2	%	10	%	15	%	20	%	Rotation Output	Output
No.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	vs. Input	Shaft Pos.
IMDDY-66	1720	1772	1708	1776	1688	1772	1636	1759	1588	1747	1497	1722	1422	1706	Same	Υ
	2169 1958 1720 1593	2234 1914 1772 1641	2154 1845 1708 1582	2239 1918 1776 1644	2129 1823 1688 1563	2239 1914 1772 1641	2063 1767 1636 1515	2218 1900 1759 1629	2003 1715 1588 1471	2203 1887 1747 1617	1888 1617 1497 1386	2171 1860 1722 1594	1793 1536 1422 1317	2151 1842 1706 1580		
IMDDX-66	1364 1165 836 765 634	1405 1200 861 788 653	1355 1157 830 759 629	1408 1203 862 780 654	1339 1144 820 750 622	1405 1200 861 787 653	1298 1108 795 728 603	1395 1191 854 782 648	1260 1076 772 706 585	1385 1183 848 776 643	1188 1014 727 666 552	1366 1166 836 765 634	1178 964 691 632 524	1353 1155 828 758 6 28	Орр.	X
	2735 2622 2400 2357	2817 2700 2472 2422	2716 2603 2383 2335	2824 2706 2477 2428	2684 2573 2355 2308	2817 2700 2472 2422	2601 2494 2282 2236	2797 2681 2454 2405	2525 2420 2215 2171	2778 2662 2437 2388	2380 2282 2088 2047	2738 2624 2402 2354	2261 2167 1984 1944	2712 2600 2380 2332		
*	2267 2169 2075 2014	2335 2234 2137 2075	2251 2154 2060 2000	2341 2239 2142 2080	2225 2129 2036 1977	2335 2234 2137 2075	2156 2063 1973 1916	2318 2218 2121 2060	2093 2003 1915 1860	2302 2203 2107 2045	1973 1888 1806 1753	2269 2171 2076 2016	1874 1793 1715 1666	2248 2151 2057 1997		
	2006 1880 1858 1720	2066 1937 1914 1772	1992 1867 1845 1708	2071 1941 1918 1776	1969 1845 1823 1688	2066 1937 1914 1772	1908 1788 1767 1636	2051 1922 1900 1759	1852 1736 1715 1588	2037 1909 1887 1747	1746 1636 1617 1497	2008 1882 1860 1722	1658 1555 1536 1422	1989 1864 1842 1706		
	1593 1475 1469 1364	1640 1518 1 5 13 1405	1582 1465 1459 1355	1644 1523 1516 1408	1563 1448 1442 1339	1640 1519 1513 1405	1515 1403 1397 1298	1628 1508 1502 1395	1470 1362 1356 1260	1617 1498 1492 1385	1386 1284 1279 1188	1594 1477 1470 1365	1317 1220 1215 1128	1579 1463 1457 1353		
*	1263 1258 1165 1082	1301 1296 1200 1114	1254 1250 1157 1075	1304 1299 1203 1117	1240 1235 1144 1062	1301 1296 1200 1114	1201 1197 1108 1029	1291 1286 1191 1106	1166 1162 1076 999	1282 1278 1183 1098	1099 1095 1014 942	1264 1259 1166 1083	1044 1041 964 895	1252 1248 1155 1073	Same	
IMDDZ-66	1079 1054 964 924	1111 1085 993 952	1071 1046 958 918	1114 1087 995 954	1059 1034 946 907	1111 1085 993 952	1027 1002 917 879	1103 1077 986 945	997 973 890 854	1096 1070 979 938	939 917 839 805	1080 1054 965 925	893 871 797 764	1070 1044 956 916		Z
	903 836 826 800	930 860 850 823	896 839 820 794	932 862 852 825	886 820 811 785	929 860 850 823	859 795 786 761	923 854 844 817	833 772 763 738	916 848 838 812	786 727 719 695	903 836 826 800	746 691 683 661	895 828 819 793		
	790 774 765 708	813 796 787 729	784 768 759 703	815 798 789 731	775 759 750 695	813 796 787 729	751 736 728 674	807 790 782 724	729 714 706 654	802 785 776 718	688 673 665 616	790 774 765 708	653 640 632 586	783 767 758 702		
*	685 662 634 606	705 682 653 624	680 658 630 602	706 684 654 626	672 651 622 595	705 682 653 624	651 631 603 577	700 677 648 620	632 612 585 560	695 673 643 616	596 577 552 528	685 663 634 607	566 548 524 502	678 657 628 601		
*	587 565 518 503	604 583 533 518	583 562 515 499	606 584 534 519	576 556 509 494	604 583 533 517	559 539 493 478	600 578 529 514	542 523 478 464	596 575 526 510	511 493 451 438	587 566 518 503	486 468 429 416	582 561 513 498		
	429 406 371 340	442 418 382 350	427 403 369 337	443 419 383 351	422 399 365 334	442 418 382 350	409 386 353 323	439 415 379 347	397 375 343 314	436 412 377 345	374 353 323 296	429 406 371 340	355 336 307 281	425 402 368 337	5 2 8 7	
	308 282 234	317 290 240	306 280 232	317 291 241	302 277 229	317 290 240	293 268 222	314 288 238	284 260 216	312 286 237	268 246 203	308 282 233	255 233 1 9 3	305 279 231		

^{*}Also available in Type B configuration.

SPECON 2 MDD-66 DIFFERENTIAL DRAW TRANSMISSION **OUTPUT POWER CAPACITY 15 HP MAX.**

TYPE A, STYLE I

RATED INPUT SPEED - 900 RPM

 $\begin{array}{c} \text{CONTROL SCREW TURNS: } -66, 9.8 \\ -84, 9.1 \end{array}$

			1		<u> </u>		D RA					-			Rotation		
Model	3	%	4	1	5		71/2	%	10	%	15	%	20)%	Output	Output Shaft	
No.	Min.	Max.	Min.	Max.	Min.	Max.	vs. Input	Pos.									
2MDDY-66	1720	1772	1708	1776	1688	1772	1636	1759	1588	1747	1497	1722	1422	1706	Same	Υ	
* 2MDDX-66	1720 1577 1403 1175	1772 1624 1445 1210	1708 1566 1394 1167	1776 1627 1448 1213	1688 1548 1377 1153	1772 1624 1445 1210	1636 1500 1335 1118	1759 1612 1434 1201	1588 1456 1296 1085	1747 1601 1425 1193	1497 1372 1221 1023	1722 1578 1404 1176	1422 1304 1160 972	1706 1563 1391 1165	Орр.	X	
ZIMBBX-00	978 860 703 607	1006 886 723 625	971 854 698 603	1009 888 725 627	959 844 689 596	1006 886 723 625	930 818 668 578	999 879 718 621	903 794 649 561	992 873 713 616	851 74 9 611 529	978 861 703 607	808 711 581 502	969 853 696 602	Орр.		
	2438 2395 1984 1954	2511 2466 2048 2013	2421 2378 1975 1941	2516 2472 2053 2017	2392 2350 1952 1918	2511 2466 2048 2013	2319 2278 1892 1859	2492 2448 2033 1998	2250 2211 1836 1804	2475 2431 2019 1984	2122 2084 1731 1701	2440 2397 1990 1956	2015 1980 1644 1616	2417 2374 1972 1938			
÷	1720 1577 1530 1446	1772 1624 1576 1489	1708 1566 1520 1436	1776 1627 1580 1492	1688 1548 1502 1419	1772 1624 1576 1489	1636 1500 1456 1375	1759 1612 1565 1478	1588 1456 1413 1335	1747 1601 1554 1468	1497 1372 1332 1258	1722 1578 1532 1446	1422 1304 1265 1195	1706 1563 1517 1433			
*	1403 1286 1175 1145	1445 1324 1210 1179	1394 1277 1167 1137	1448 1327 1213 1181	1377 1262 1153 1123	1445 1324 1210 1179	1335 1223 1118 1089	1434 1314 1201 1170	1296 1187 1085 1057	1425 1305 1193 1162	1221 1119 1023 996	1404 1287 1176 1145	1160 1063 972 946	1391 1275 1165 1135			
*	1077 978 959 896	1109 1006 987 922	1070 971 952 890	1112 1009 989 925	1057 959 941 879	1109 1006 987 922	1025 930 912 852	1101 999 980 916	995 903 885 827	1094 992 973 909	938 851 834 780	1078 978 959 896	891 808 792 741	1068 969 950 888	Same		
2MDDZ-66	860 803 797 789	886 826 821 812	854 797 792 783	888 828 823 814	844 788 783 774	886 826 821 812	818 764 758 750	879 820 815 806	794 741 736 728	873 815 809 800	749 699 694 686	861 803 798 789	711 664 659 652	853 796 790 781		Z	
	703 668 644 607	723 687 663 625	698 663 639 603	725 689 664 627	689 655 632 596	723 687 663 625	668 635 612 578	718 682 658 621	649 616 594 561	713 677 653 616	611 581 560 529	703 668 644 607	581 552 532 502	696 662 638 602			
*	588 573 556 496	605 589 572 510	584 569 552 491	606 591 573 511	577 562 545 486	605 589 572 510	559 545 528 471	600 585 567 506	543 529 513 458	596 581 564 503	512 499 484 431	588 573 555 495	486 474 459 410	582 568 550 491			
	489 480 430 415	503 494 443 427	486 476 427 412	504 495 444 428	480 471 422 407	503 494 443 427	465 456 409 395	499 490 439 424	451 443 397 383	496 487 436 421	426 418 375 361	489 480 430 415	404 397 356 343	484 475 426 411			
	399 351 345 304	411 361 355 312	396 349 343 302	411 362 356 313	392 345 339 298	411 361 355 312	380 334 328 289	408 359 352 310	369 324 319 281	405 356 350 308	347 306 301 265	399 351 345 304	330 291 286 251	395 348 342 301			
	287 248 215	295 255 220	285 246 213	295 256 221	282 244 211	295 255 2 20	273 236 204	293 253 219	265 229 198	291 251 217	250 216 187	286 248 214	237 205 178	284 245 212			

^{*}Also available in Type B configuration.

SPECON 3 MDD-66 DIFFERENTIAL DRAW TRANSMISSION **OUTPUT POWER CAPACITY 22 1/2 HP MAX.**

TYPE A, STYLE I

RATED INPUT SPEED — 900 RPM

CONTROL SCREW TURNS: — 66, 12.4 — 84, 11.7

Model	39	%	4	%	59	%	71/2	%	10	1%	15	%	20	1%	Rotation Output	Output	
No.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	vs.	Shaft Pos.	
3MDDY-66	1720	1772	1708	1776	1688	1772	1636	1759	1588	1747	1497	1722	1422	1706	Same	Υ	
3MDDX-66	1720 1486 1346 1159	1772 1530 1386 1193	1708 1475 1337 1150	_1776 1533 1389 1196	1688 1458 1321 1137	1772- 1530 1386 1193	1636- 1413 1280 1102	1759 1519 1376 1184	1588 1372 1243 1070	1747 1508 1367 1176	1497 1293 1172 1008	1722 1487 1347 1159	1422 1228 1113 958	1706 1473 1334 1148	022	X	
3WDDX-00	892 754 671 484	919 776 690 498	886 749 666 481	921 778 692 499	876 740 658 475	919 776 690 498	849 718 638 461	912 771 685 494	824 696 619 447	906 765 697 491	777 657 584 421	893 755 671 484	738 624 555 400	884 748 665 479	Орр.	^	
	2288 2035 1720 1558	2356 2096 1772 1605	2272 2021 1708 1547	2362 2101 1776 1608	2245 1997 1688 1529	2356 2096 1772 1605	217 6 193 6 163 6 1482	2339 2080 1759 1593	2112 1879 1588 1439	2323 2066 1747 1582	1991 1771 1497 1356	2290 2037 1722 1559	1892 1683 1422 1288	2269 2018 1706 1545			
	1486 1346 1283 1162	1530 1386 1321 1197	1475 1337 1274 1154	1533 1389 1324 1200	1458 1321 1259 1141	1530 1386 1321 11 97	1413 1280 1220 1106	1519 1376 1311 1188	1372 1243 1184 1073	1508 1367 1302 1180	129 3 117 2 1117 1012	1487 1347 1284 1163	1228 1113 1061 961	1473 1334 1272 1152			
	1159 1054 1000 892	1193 1085 1030 919	1150 1046 993 886	1196 1087 1032 921	1137 1034 982 876	1193 1085 1030 919	1102 1002 952 849	1184 1077 1022 912	1070 973 924 824	1176 1069 1015 906	1008 917 871 777	1159 1054 1001 893	958 871 827 738	1148 1044 991 884			
	780 771 754 698	803 793 776 719	775 765 749 693	805 795 778 720	766 756 740 685	803 793 776 719	742 733 718 664	797 787 771 713	720 711 696 645	792 782 765 709	679 671 657 608	781 771 755 698	645 637 624 577	733 764 748 692			
3MDDZ-66	671 652 601 590	690 671 619 607	666 647 597 586	692 672 620 609	658 639 590 579	690 671 619 607	638 620 572 562	685 666 614 603	619 602 555 545	697 661 610 599	584 567 523 514	671 652 601 590	555 539 497 488	665 646 595 585	Same	Z	
	57 9 52 5 50 8 48 4	596 540 523 498	575 521 505 481	598 541 524 499	569 515 499 475	596 540 523 498	55 1 49 9 48 3 46 1	592 536 519 494	535 485 469 447	\$88 \$33 \$15 491	504 457 442 421	579 525 508 484	479 434 420 400	574 520 503 479			
	463 452 418 391	476 465 430 403	460 449 415 389	477 466 431 403	454 444 410 384	476 465 430 403	44 0 430 398 372	473 461 427 400	428 417 386 361	470 458 424 397	403 393 364 341	463 452 418 391	383 374 346 324	459 447 414 388			
	3/79 3/48 331 326	390 358 340 335	376 346 329 324	391 359 341 336	372 342 325 320	390 358 340 335	360 331 315 310	387 355 338 333	350 321 306 301	385 353 335 331	330 303 288 284	379 348 331 326	313 288 274 270	376 345 328 323			
	294 262 251 212	302 269 258 218	292 260 250 211	303 270 259 219	289 257 247 209	302 269 258 218	280 249 239 202	300 267 256 217	272 242 232 196	298 265 254 215	256 228 219 185	294 261 251 212	243 216 208 176	291 259 249 210			
	189 136	194 140	188 135	194 140	185 134	194 140	180	192 139	174 126	191 138	164 119	188 136	156 113	187 135			

For Type B speeds consult factory.

SPECON 3 MDD-66 DIFFERENTIAL DRAW TRANSMISSION OUTPUT POWER CAPACITY 22½ HP MAX.

TYPE B, STYLE I

RATED INPUT SPEED — 900 RPM

CONTROL SCREW TURNS: 66 12.4,

84 11.7

ROTATION: OUTPUT VS INPUT SAME
INPUT SHAFT AT POSITION Y, OUTPUT SHAFT AT POSITION Z

				DRAW	OR SF	EED R	ANGE	AND C	UTPU	T RPM				
Model	39	%	4	%	5	5% 71/2			2% 10%			5%	20%	
No.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
3MDD	1554	1601	1543	1604	1522	1599	1478	1588	1431	1576	1352	1555	1283	1539
	1335	1376	1328	1381	1309	1376	1274	1366	1232	1356	1163	1337	1104	1324
	1210	1247	1204	1251	1187	1247	1151	1238	1116	1229	1054	1212	1000	1200
	1046	1077	1039	1080	1025	1077	995	1069	964	1061	910	1047	864	1037
	903	930	898	933	885	930	859	923	832	917	786	904	746	895
	818	843	813	845	802	843	779	837	754	831	712	819	676	811
	704	725	700	728	690	725	670	720	649	715	613	705	582	698
	542	559	539	560	531	558	516	554	500	550	472	543	448	538
	458	472	456	474	449	472	436	469	423	466	399	459	379	455
	408	420	405	421	399	420	388	417	376	414	355	408	337	404
	294	303	292	304	288	303	280	301	271	298	256	294	243	292

SPECON 4 MDD-66 DIFFERENTIAL DRAW TRANSMISSION OUTPUT POWER CAPACITY 30 HP MAX.

TYPE A, STYLE I

RATED INPUT SPEED --- 720 RPM

CONTROL SCREW TURNS: 13.9

DRAW OR SPEED RANGE AND OUTPUT RPM																
Model No.	4%		5½%		7%		10%		13%		16%		25%		Rotation Output	Output
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	vs. Input	Shaft Pos.
4MDDY-66	1365	1421	1341	1415	1313	1408	1270	1397	1221	1384	1181	1370	1070	1345	Same	Υ
4MDDX-66	1365 1001 723 446	1421 1042 752 464	1341 983 710 438	1415 1038 749 462	1313 963 695 429	1408 1033 745 460	1270 931 672 415	1397 1024 740 456	1221 895 646 399	1384 1015 733 452	1181 866 625 386	1370 1005 725 447	1070 785 566 349	1345 986 712 439	Орр.	X
4MDDZ-66	1365 1001 985 734	1421 1042 1026 764	1341 983 968 721	1415 1038 1022 761	1313 963 948 706	1408 1033 1016 757	1270 931 917 683	1397 1024 1009 751	1221 895 881 657	1384 1015 999 744	1181 866 853 635	1370 1005 989 737	1070 785 772 575	1345 986 971 723	Same	Z
	723 608 530 446	752 633 552 464	710 597 521 438	749 630 549 462	695 585 510 429	745 627 547 460	672 566 493 415	740 622 542 456	646 544 474 399	733 616 537 452	625 526 458 386	725 610 532 447	566 476 415 349	712 599 522 439		
	383 327 236 146	398 340 246 152	376 321 232 143	397 339 245 151	368 314 227 140	395 337 243 150	356 304 220 135	392 335 241 149	342 292 211 130	388 331 239 148	331 283 204 126	384 328 237 146	300 256 185 114	377 322 233 143		

For Type B speeds consult factory.

NOTE: Ranges shown in shaded area have limited Torque capacity — See Page 4

SPECON 5 MDD-66 DIFFERENTIAL DRAW TRANSMISSION OUTPUT POWER CAPACITY 45 HP MAX.

TYPE A, STYLE I

RATED INPUT SPEED — 720 RPM

CONTROL SCREW TURNS: 15.5

DRAW OR SPEED RANGE AND OUTPUT RPM																
Model No.	4%		51/2 %		7%		10%		13%		16%		25%		Rotation Output	Output
	Min.	Max.	vs. Input	Shaft Pos.												
5MDDY-66	1365	1421	1341	1415	1313	1408	1270	1397	1221	1384	1181	1370	1070	1345	Same	Y
5MDDX-66	1365 934 715 341	1421 972 744 355	1341 918 702 335	1415 968 741 354	1313 898 688 328	1409 963 738 352	1270 869 665 318	1397 956 732 349	1221 835 640 305	1384 947 725 346	1181 808 619 295	1370 937 718 343	1070 732 560 268	1345 920 705 336	Орр.	Х
	1365 1045 934	1421 1088 972	1341 1027 918	1415 1083 968	1313 1005 898	1408 1078 963	1270 972 869	1397 1070 956	1221 935 835	1384 1060 947	1181 904 808	1370 1049 937	1070 819 732	1345 1030 920		
5MDDZ-66	715 490 375 341	744 509 390 355	702 481 368 335	741 507 388 354	688 471 360 328	738 504 386 352	665 455 348 318	732 501 383 349	640 438 335 305	725 496 380 346	619 423 324 295	718 491 376 343	560 383 294 268	705 482 369 336	Same	z
	233 179 85	243 186 8 9	229 176 84	242 185 8 8	225 172 82	241 184 88	217 166 79	239 183 87	209 160 76	237 181 87	202 155 74	234 179 86	183 140 67	230 176 84		

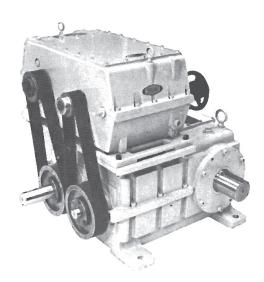
For Type B speeds consult factory.

SELECTION TABLE FOR TYPE A SPECON 6MDD TRANSMISSION INPUT AND OUTPUT ON OPPOSITE SIDES

MAX. OUTPUT 75 HP			No	minal Draw	Rated Ir					
			5%	71/2 %	10%	15%	20%	Style I	Style II	Screw Turns
	Υ		934-984	902-975	871-967	809-952	750-938	500	Consult	25.4
		Min.	226-237	218-235	210-233	195-230	181-226]	Factory	
MODEL	^	Max.	2400-2530	2320-2505	2240-2485	2080-2445	1930-2410			
6MDD		Min.	54.5-57.0	52.5-57.0	50.5-56.0	47.0-55.5	44.0-54.5			
		Max.	2400-2530	2320-2505	2240-2485	2080-2445	1930-2410			

For Type B speeds consult factory.

NOTE: See Page 3 for Torque limitations


SELECTION TABLE FOR TYPE C SPECON MDD TRANSMISSIONS ["PIGGY-BACK" ARRANGEMENT] INPUT AND OUTPUT OPTIONAL

		Nominal Draw and Output Speed Ranges								
MODEL D	DESIGNATION	5%	71/2 %	10%	15%	20%	Speeds			
MAX. OU	TPUT 3.5 HP					·				
1/ DD	Min.	238-250	231-250	225-250	212-250	200-250	750			
½ DD	Max.	2850-3000	2770-3000	2700-3000	2550-3000	2400-3000	2250			
MAX. OU	TPUT 150 HP									
000	Min.	238-250	231-250	225-250	212-250	200-250	600			
8DD	Max.	2850-3000	2770-3000	2700-3000	2250-3000	2400-3000	1800			

Same Input Speed Ranges, Nominal Draw and Output Speed Ranges as shown for Model ½DD, 3.5 HP apply to the following:

 Model
 1DD
 2DD
 3DD
 5DD
 6DD

 Max. Output HP
 6
 12
 25
 50
 80

Piggy-Back Arrangement Typical of Specon Type C Differential Draw Transmissions

FIGURE 11

OPTIONS

The Specon Transmission is normally supplied with the standard manual control. Other types of control, such as remote, vernier, remote vernier, lever, electrical, pneumatic and hydraulic are available.

MANUAL CONTROL

Specon transmissions are normally supplied with a hand knob on the adjusting screw for normal manual adjustment. The adjusting knob includes an indicator mechanism which accurately indicates turns and parts of turns of the adjusting screw. Output speed setting is a definite function of adjusting screw turns and thus the handwheel indicator accurately reflects output speed setting or ratio.

MECHANICAL REMOTE CONTROL

Mechanical Remote Control is an indicator and handwheel assembly which can be remotely mounted from the transmission. It can be connected by roller chain or flexible shafting to the adjusting screw of the transmission. Thus normal manual control can be achieved from a remote position.

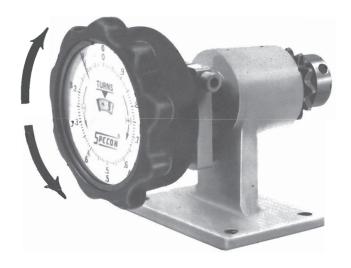


FIGURE 12

VERNIER CONTROL

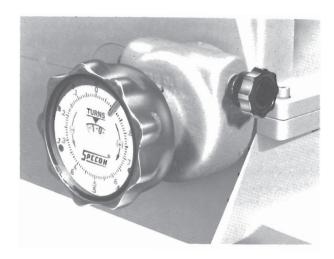


FIGURE 13

Vernier Control consists of a small worm and worm gear package connected to the adjusting screw which permits finer adjusting of output speed per turn of the adjusting hand knob.

The worm gear ratio can be provided either in a 7½:1 or a 30:1 ratio. The vernier control package contains both a rough and fine adjusting handwheel. This control can be provided as an integral part of the Specon transmission, in which case it is located at the adjusting screw position. The same accurate indicating handwheel as is used on the remote control can be used on the course adjusting shaft of the vernier control. Thus a fine degree of repeatability can be achieved.

REMOTE VERNIER CONTROL

The Remote Vernier control accessory utilizes the same construction and offers the same features as the integral vernier control. It can, however, be remotely mounted from the transmission and connected to the adjusting screw of the transmission by roller chain or flexible shafting. The remote vernier control also has a coarse adjusting handwheel and a fine adjusting handwheel.

PRELOADING

Specon transmissions can, as an option, be provided with preloaded control levers. This preloading feature incorporates a tension or compression spring between the control levers of the transmission which preloads the control mechanism and reduces the play resulting from manufacturing and assembly tolerances.

The overall effect of this feature is to improve the operating accuracy of the transmission under constant load conditions.

When specifying preloading, it is necessary to also define the position of the control screw relative to the constant speed or variable speed shaft and whether the load is a normal driving or overhauling load.

ELECTRIC REMOTE CONTROL

Electric Remote Control can also be made available on the Specon Transmission. The remote control consists of a reversible gear head motor with a very slow output speed.

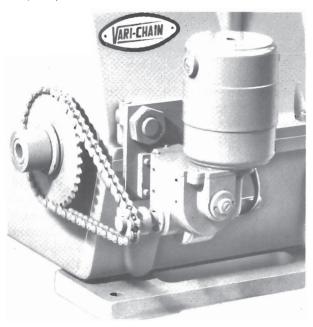
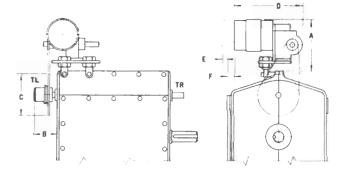



FIGURE 14

Unit Size	Α	В	C	D	E	F
0	51/16	11/8	315/16	73/8	11/2	
1/2	53/8	11/8	315/16	73/8	7/16	
1	53/8	21/2	315/16	73/8	1/16	
2	53/8	21/2	433/64	73/8		3/4
3	51/4	21/2	433/64	73/8		13/8
4	63/4	25/8	433/64	1313/16	21/8	
5	63/4	25/8	433/64	1313/16	5/8	

FIGURE 15

The output shaft of the gear head motor is connected to the adjusting screw with roller chain. A mechanical slip clutch is included to protect the control and motor when the control levers in the unit have reached the end of travel. Electric service can be 115 or 230V A/C or D/C single phase or 230V to 575V multiphase A/C.

PNEUMATIC CONTROL

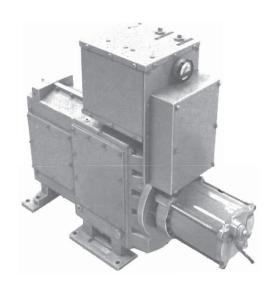


FIGURE 16

Recommended for operation in an explosive atmosphere or on automatic control loops or where rapid response is desirable. Three types of pneumatic controls are available:

- Reversible air motor with pushbutton station for remote operator control. By appropriate use of pneumatic relays, remote control from several hundred feet can be achieved.
- Design consisting of an air motor and appropriate interconnected pressure regulators, relays and valves requiring standard signal pressures such as 3-15 PSI to control through full speed range of transmission.
- Pneumatic cylinder used with right angle lever control for continuous speed range changes. Signal pressure 3-15 PSI.

Systems 2 & 3 are suitable for automatic control systems requiring only 3-15 PSI signal pressure from a process controlling element.

TACH GENERATOR

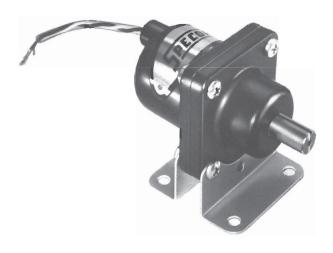


FIGURE 17

The Specon tachometer-generator and readout system is designed for industrial applications. The panel mount indicator may be calibrated in RPM, FPM, or other units. Typical ranges available are 0-100, 0-250, 0-500, 0-1000 and 0-2000 RPM with a calibrated system accuracy within 1% of full scale reading. The generator is enclosed in a weatherproof housing with a ½" diameter output shaft extension, bearing mounted and designed for industrial applications.

The generator may be furnished with a bracket for remote mounting or direct flange mounted units are also available when ordered as part of a Specon variable speed transmission.

ORDERING INFORMATION

ORDERING

When ordering, specify: Size and designation, type, style, assembly, type of mounting, speed requirements, draw range, and controls required. (For Style III units specify motor HP and motor electrical characteristics.) For example, to order a Style I:

Specon 5MDDZ-66 Type A Style I, Assembly A, Horizontal Input speed 720 RPM

Output speed — 665-732 RPM. 10% draw.

Equipped with — (List control required).

ISO 2015 Certified

